Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Yao Kang, Rui-Feng Hu, Ye-Yan Qin, Zhao-Ji Li, Yu-Biao Chen, Yi-Hang Wen, Jian-Kai Cheng and Yuan-Gen Yao*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.071$
$w R$ factor $=0.185$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Pyridinium 2,2'-dithiodisalicylate

The title compound, $2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot\left[\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COO})_{2} \mathrm{~S}_{2}{ }^{2-}\right.$ or $2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{2-}$, has a twofold axis of symmetry passing through the centre of the $\mathrm{S}-\mathrm{S}$ bond.

Comment

It is well known that transition metal ions can function as electrophiles in the cleavage of the $S-S$ bond in organic disulfides. For this reason, transition metal ion/organic disulfide compounds, such as those of nickel(II) (Ottersen et al., 1974; Ramalingam et al., 1987) and osmium (Lee \& Wong, 1996), have been synthesized. In our systematic investigation of trimolybdenum clusters, we have synthesized successfully $\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{DTP})_{3}\left(p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$ (Tang et al., 2001) from the reaction of $\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{DTP})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (DTP is diethyl dithiophosphate) with $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$ and pyridine. However, when we used $\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{DTP})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and 2,2'-dithiodisalicylic acid as the starting materials for the reaction in a mixed solvent of dichloromethane, ethanol and pyridine, the title compound, $2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot\left[\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COO})_{2} \mathrm{~S}_{2}{ }^{2-}\right.$, (I), was unexpectedly obtained.

The title compound (Fig. 1) is composed of $2,2^{\prime}$-dithiodisalicylate and pyridinium ions, in a ratio of 1:2; the asymmetric unit consists of one-half molecule of the disalicylate and one pyridinium cation. A twofold axis of symmetry passes through the centre of the $\mathrm{S}-\mathrm{S}$ bond. There is a hydrogen bond; $\mathrm{O} 1 \cdots \mathrm{~N} \quad 2.653(6) \AA, \quad \mathrm{H} 0 A \cdots \mathrm{O} 1 \quad 1.79 \AA$ and $\mathrm{O} 1 \cdots \mathrm{H} 0 A-\mathrm{N} 178^{\circ}$. The $\mathrm{C} 2-\mathrm{S}-\mathrm{S}^{\prime}-\mathrm{C}^{\prime}$ torsion angle and S $-\mathrm{S}^{\prime}$ bond length are 87.3 (3) and 2.067 (2) \AA, respectively. These values compare well with corresponding angles and bond lengths of $86(1)^{\circ}$ and 2.039 (10) A (Lee et al., 1996), and 86.7° and 2.047 (3) \AA (Ottersen et al., 1974). The dihedral angle between the plane defined by atoms $\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 1 / \mathrm{O} 2$ and the plane defined by the atoms symmetry-related to these nine is $87.6(1)^{\circ}$. Bond lengths are within expected ranges.

Experimental

The title compound was prepared by the following two methods.
Method 1: $\mathrm{Mo}_{3} \mathrm{~S}_{4}(\mathrm{DTP})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(0.085 \mathrm{mmol})$ and $2,2^{\prime}$-dithiodisalicylic acid (0.042 mmol) were dissolved in a mixed solvent $(20 \mathrm{ml}$ dichloromethane, 20 ml ethanol and 1 ml pyridine). After refluxing over an oil bath at 353 K for 1 h , the hot dark-brown solution was

Received 9 July 2002 Accepted 26 July 2002 Online 31 July 2002
filtered into another flask. Rectangular yellow crystals precipitated over a period of 20 d (yield: $0.01 \mathrm{~g}, 52 \%$).

Method 2: 2,2'-dithiodisalicylic acid (1 mmol) was dissolved in 20 ml dichloromethane, 20 ml ethanol and 1 ml pyridine and refluxed over an oil bath at 353 K for 1 h . Rectangular, yellow crystals precipitated over a period of 15 d (yield: $0.34 \mathrm{~g}, 73 \%$).

Crystal data

$2 \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{2-}$
$M_{r}=464.54$
Monoclinic, C2/c
$a=8.0936$ (4) A
$b=12.9825$ (6) £
$c=21.9157(10) \AA$
$\beta=96.882(1)^{\circ}$
$V=2286.20(19) \AA^{3}$
$Z=4$
$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1954
\quad reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Rectangular, yellow
$0.68 \times 0.48 \times 0.30 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer φ and ω scans
Absorption correction: none
3703 measured reflections
1980 independent reflections
$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation reflections
$\theta=1.9-25.0^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.68 \times 0.48 \times 0.30 \mathrm{~mm}$

1406 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-15 \rightarrow 10$
$l=-21 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071$
$w R\left(F^{2}\right)=0.185$
$S=1.15$
1980 reflections
145 parameters
H -atom parameters not refined

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0504 P)^{2} \\
&+6.9607 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (A°).

	$1.799(4)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.378(7)$
$\mathrm{S}-\mathrm{C} 2$	$2.067(2)$	$\mathrm{N}-\mathrm{C} 8$	$1.314(6)$
$\mathrm{S}-\mathrm{S}^{\mathrm{i}}$	$1.208(5)$	$\mathrm{N}-\mathrm{C} 12$	$1.313(7)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.389(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.381(7)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.415(6)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.394(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.499(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.360(9)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.313(5)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.380(8)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.391(6)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.343(9)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.376(6)$		
$\mathrm{C} 3-\mathrm{C} 4$	$104.52(14)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$114.5(4)$
$\mathrm{C} 2-\mathrm{S}-\mathrm{S}^{\mathrm{i}}$	$119.7(4)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.5(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.4(4)$	$\mathrm{C} 8-\mathrm{N}-\mathrm{C} 12$	$117.9(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.9(4)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.6(5)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$118.1(4)$	$\mathrm{N}-\mathrm{C} 12-\mathrm{C} 11$	$123.6(6)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.4(3)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.4(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S}$	$120.5(3)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$117.4(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S}$	$120.7(4)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$121.6(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.0(4)$	$\mathrm{N}-\mathrm{C} 8-\mathrm{C} 9$	$123.0(6)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$122.4(4)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$116.5(7)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$			
$\mathrm{C} 2-\mathrm{S}-\mathrm{S}$	$\mathrm{i}-\mathrm{C} 2^{\mathrm{i}}$	$87.3(3)$	

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.
H atoms were placed in calculated positions and not refined.
Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figure 1
The structure of the title compound, showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.

Figure 2
A view of the packing within the unit cell, viewed along [001]. Probability ellipsoids are drawn at the 30% level.

The authors are grateful to the State Key Basic Research and Development Plan of China (001-CB-108906), the NNSF of China (Nos. 29733090 and 20173063), Key Project in KIP of the CAS (KJCX2-H3) and the NNSF of Fujian Province (E0020001) for financial support of this work.

References

Lee, S. M. \& Wong, W. T. (1996). J. Cluster Sci. 7, 37-47.
Ottersen, T., Warner, L. G. \& Seff, K. (1974). Acta Cryst. B30, 1188-1191.
Ramalingam, K., Aravamudan, G. \& Seshasayee, M. (1987). Z. Kristallogr. 181, 215-222.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tang, Y. H., Qin, Y. Y., Wu, L., Li, Z. J., Kang, Y. \& Yao, Y. G. (2001). Polyhedron, 20, 1-6.

